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There are several standard methods that allow for the identification of a description of quantum chaotic
systems. In this paper we discuss characteristics of quantum chaos, namely, the distributions of the following
finite elements: asymmetrical three point first finite element of the three adjacent energy levels, the symmetri-
cal three point first finite element of the three adjacent energy levels, and the second difference. The probability
density functions of these three cases were calculated for the three-dimensional Gaussian orthogonal ensemble,
Gaussian unitary ensemble, Gaussian symplectic ensemble, and for the quantum integrable three level system.
We compare these distributions with the experimental data aiming at better classification of quantum systems
~determining whether they are chaotic or integrable!. A hypothesis is formulated: for both integrable and
chaotic systems the energy levels have a tendency towards homogeneity. Finally we discuss the role of the
discrete analogy to the curvature of levels.@S1063-651X~96!01109-9#

PACS number~s!: 05.45.1b, 24.60.Lz, 24.60.Ky

I. INTRODUCTION

The basic tool allowing one to study quantum chaos in
many level systems is nearest neighbor spacing, that is the
difference between the adjacent levels. In an ascending se-
quence of energy levels of the many level quantum chaotic
system one obtains a shortage of small spacings, observed in
some nuclear and molecular spectra. To explain this phe-
nomenon Wigner assumed the Gaussian orthogonal en-
semble GOE~2!; the Hamiltonian matrix elements were inde-
pendent random variables~see @1–4#!. This statistical
hypothesis led to the proper description of level repulsion.

The i th spacingsi5Ei112Ei ( i51, . . . ,n) is the sim-
plest case of the finite element and it is not a proper tool to
describe homogeneity of the energy distribution or long
range correlation effects between levels as any ofsi is
strictly local. Such information, however, can be extracted
from the distributions of the higher-order finite elements. In
order to obtain a better than standard@1–4# statistical de-
scription of the quantum level system we have derived ana-
lytic formulas for the distributions of some higher finite ele-
ments @5,6#. In @5# we studied thei th second difference
D2Ei of the three adjacent energy levelsEi ,Ei11 ,Ei12:

D2Ei5D1Ei112D1Ei5Ei1Ei1222Ei11 ,

i51, . . . ,n21. ~1!

We demonstrated that the probability density function of the
second difference has a universal character. The probability
density function of the second difference was computed ana-
lytically for the following ensembles: GOE~3!, Gaussian uni-
tary ensemble@GUE~3!#, Gaussian symplectic ensemble
@GSE~3!#, and for the quantum integrable three level system.
In @6# we studied the three energy level quantum system and
we derived the probability density functions of the three

point finite elements of energy levels for the GOE~3!,
GUE~3!, GSE~3!, and for the quantum integrable system. We
studied the following three point finite elements:

Da,fin
1 Ei5

1

2~ i112 i !
~23Ei14Ei112Ei12! ~2!

~compare@7#; we namedDa,fin
1 Ei the i th asymmetrical three

point first finite element; below we call it the asymmetrical
element! and

Ds,fin
1 Ei115

1

2~ i112 i !
~Ei122Ei ! ~3!

~compare@7#; we calledDs,fin
1 Ei11 the i th symmetrical three

point first finite element or just the symmetrical element!.
We derived analytically the probability density functions of
these finite elements for GOE~3!, GUE~3!, and GSE~3! as
well as for the sequence of the three adjacent randomly dis-
tributed energy levels. The distribution of the quantity named
first order spacing~or the next nearest neighbor spacing! for
the ordered sequence of the levels randomly distributed is
given in @8#, formula ~3!. The explicit formulas for distribu-
tions of first order spacing were derived in@9#, formula ~6!
for the GOE~3! and in@10#, formula~89! for the GUE~3!. To
the best of our knowledge, the distribution for the GSE~3!
was derived for the first time in@6#. The distributions of the
symmetrical element and of the first order spacing are con-
sistent. The analytic formulas for the above distributions for
the GOE~3! and for the integrable system are given in the
Appendix. We do not present the formulas for the GUE~3!
and GSE~3! since the full formulas are contained in@5,6#.

As introduced above, statistical measures carry partial in-
formation about the system, extracted from the joint prob-
ability density functions ofn eigenvalues of a random matrix
f E1 , . . . ,EN

b (e1 , . . . ,eN) @9,11–15#.

The n-level correlation functionRNnb was introduced by
Dyson @16# for the circular unitary ensemble of dimension
N. The n-level correlation function is the joint probability
density function of findingn levels, regardless of their order,
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and the values of the remainingN2n levels are varied and
are integrated out. It can also be defined for the GOE(N),
GUE(N), and GSE(N) as follows:

RNnb~e1 , . . . ,en!

5
N!

~N2n!! E2`

`

•••E
2`

`

den11•••deNf E1 , . . . ,EN
b

3~e1 , . . . ,eN!. ~4!

Choosing the proper statistical measure depends on what in-
formation one wants to extract from~4!. In the literature,
there are different statistical measures derived from~4!.

Dyson defined then-level correlation functionPnb of the
n levelsE1 , . . . ,En assuming the circular unitary ensemble
of the dimensionN, for N→`:

Pnb~e1 , . . . ,en!5 lim
N→`

S p

DA2ND nRNnb~e1 , . . . ,en!,

~5!

whereD is the mean level spacing. He derived the exact
formula for P22 @16#. He also succeeded, using the quater-
nion algebra, to derive the exact formulas forPnb ,
n51,2, . . . , whereb51,2,4 stands for the circular orthogo-
nal ensemble, circular unitary ensemble, and circular sym-
plectic ensemble, respectively@17#. Mehta derived the
n-level cluster functionPnb for the GOE, GUE, and GSE
ensemble@11#. Dyson and Mehta@15# defined theD3 statis-
tics, that is the least-square deviation of the staircase function
from the best straight line fitting it. The varianceS2(n̄) of
the number of levelsn in the interval of the lengthn̄ has also
been studied@14#. Both the former and the latter constitute
the measures of the ‘‘local’’ two-level fluctuations of the
spectrum. Haq, Pandey, and Bohigas introduced a spectral-
averagedD3 measure@18#, and found very good agreement
between the two-level correlations in the nuclear data en-
semble~NDE! and the two-level correlations predicted by
GOE. In Ref.@19# they studied the three level and four level
correlations. They introduced the skewnessg1, which is the
function of two level and three level correlation functions,
and the excessg2, which is the function of two, three, and
four level correlation functions. These two fluctuation mea-
sures calculated for GOE are in good agreement with NDE.

Let us answer why we choose to work with finite ele-
ments. First of all, they are natural extensions of spacing. All
n-point finite elements (n>2) equivalent to the first differ-
ential quotient describe the level repulsion caused by long
range correlations~for largen). The n-point second differ-
ences (n>3) describe the homogeneity of levels including
long range correlations. Naturally one can introduce the
n-point higher-order differences describing even more fine
details of the level distributions. Thus the finite-element dis-
tributions allow one to extract in a systematic way much
information about higher correlation effects. Moreover, we
will show in this paper that these statistical measures are
very easy to apply for a comparison between the experimen-
tal data and theory. The aim of this paper is to compare the
theoretical results for the distributions of the asymmetrical

element, symmetrical element, second difference, and spac-
ing with the experimental data.

This paper is organized as follows. In Sec. II the distribu-
tion of the spacing is compared with the distributions of the
asymmetrical element, symmetrical element, second differ-
ence for the GOE, and for the three level quantum integrable
system. In Sec. III we discuss the obtained results and for-
mulate a hypothesis.

II. THE COMPARISON OF THE THEORETICAL
RESULTS WITH THE EXPERIMENTAL DATA

In this section we study the nuclear spectrum and the
random-sequence spectrum. According to classification
based on the finite-element distributions, one of them be-
longs to the quantum chaotic system and the remaining one
to the quantum integrable system. For every spectrum we
study the distribution of spacing, symmetrical element,
asymmetrical element, and second difference. The way to
compare the theoretical distributions for the GOE ensembles
and for the quantum integrable system with the experimental
data is to make the above four notions dimensionless. This
can be achieved by dividing them by the mean value of the
spacing for GOE~2!, GOE~3!, and for the quantum integrable
system, respectively. For the given experimental spectrum
we make these notions dimensionless by dividing them by
the mean value of the spacing calculated for the spectrum.
Hence, we compare the distribution of the given notion for
the GOE ensembles, and for the quantum integrable system
with the histogram of the notion given from the experimental
spectrum. All the details concerning the theoretical approach
are given in the Appendix.

We present the distributions of spacing, asymmetrical el-
ement, symmetrical element, and second difference for the
GOE ensembles, and for the quantum integrable system, and
the corresponding experimental histograms in~a!, ~b!, ~c!,
and ~d! of Figs. 1 and 2 respectively, where Figs. 1 and 2
show the two above-mentioned spectra. To do this we ap-
plied formulas~A2!, ~A6!, ~A8!, ~A10!, ~A12!, ~A14!, ~A16!,
and ~A18!. The experimental data were unfolded using the
the procedure described in@20#.

The first spectrum corresponds to167Er @21#. The levels in
the spectrum have the sameJp. Analysis of this spectrum
based on the spacing distribution is presented in@14# @com-
pare Figs. 1~a! and 2~a! therein#, and the system is classified
as chaotic. We study the spectrum using the distributions of
finite elements. Looking at Fig. 1~a! one can see that the
system is chaotic, since the level repulsion is observed. The
same conclusion comes from Fig. 1~b!, because the experi-
mental histogram can be fitted by the GOE~3! distribution;
the maxima of both curves are atx51 and the tails of the
curves are close to each other forx<0 andx>2. Further-
more we notice that the maxima are not as sharp as the
maximum of the distribution of the dimensionless asym-
metrical element for the quantum integrable system. The
sharp maximum means that the first derivative of the distri-
bution has discontinuity. For confirmation of the chaotic
character of the system see Fig. 1~c!. The histogram and the
GOE~3! distribution of the dimensionless symmetrical ele-
ment fit well together: they have maxima atx51 and they
have the same values at the maxima. Moreover, their tails are
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close to each other for 0<x<0.5 and forx>1.5. The short-
age of small values of the dimensionless symmetrical ele-
ment is also observed, which is equivalent to the shortage of
next nearest neighbor spacing. This means that the system is
chaotic. The results from Fig. 1~d! also confirm that the sys-
tem is chaotic, since the distribution of the dimensionless
second difference for the GOE~3! and the histogram of the
dimensionless second difference are in accordance with each
other. Their maxima are atx50, and the maxima are not
sharp@compare the sharpness of the maximum of the distri-
bution of the dimensionless second difference for the quan-
tum integrable system; see Fig. 1~d!#. Moreover, their tails
are close to each other forx<21 and forx>1. To make a
short summary: the distributions of all the four notions point
to chaos of the system.

The second spectrum corresponds to our numerical simu-
lation of the random-sequence spectrum of length 2500. A
similar simulation was made in@14# @compare Figs. 1~d! and
2~d! therein#. The system was classified as integrable. Look-
ing at Fig. 2~a! one easily deduces that the system is inte-
grable, because the small spacings are dominant and the his-
togram and the distribution of dimensionless spacing for the
integrable case fit excellently. From Fig. 2~b! we recognize
that the system is integrable. The experimental histogram fits

almost perfectly the distribution of the dimensionless asym-
metrical element for the quantum integrable system, the
maxima of both curves are atx50 and the tails of the curves
are close to each other on the whole domain. The maximum
of the histogram and the maximum of the distribution of the
dimensionless asymmetrical element for the quantum inte-
grable system are very sharp. From Fig. 2~c! we also learn
that the system is integrable. The histogram excellently fits
the distribution of the dimensionless symmetrical element for
the quantum integrable system. They have maxima at
x50.5, and they have approximately the same values at the
maxima. Moreover, their tails are close to each other on the
whole domain. The presence of small values of the dimen-
sionless symmetrical element is observed. Finally Fig. 2~d!
demonstrates that the system is integrable, since the distribu-
tion of the dimensionless second difference for the quantum
integrable system and the histogram of the dimensionless
second difference are in accordance with each other. They fit
each other excellently. Their maxima are atx50, and the
maxima are very sharp. Their tails are close to each other for
all x. In summary, all four notions predict the integrability of
the system.

The clear message coming out of all these exercises is that
it is important to study together the different distributions in

FIG. 1. ~a! The probability density function of the dimensionless spacing for the GOE~2! ~thin dashed line! for the integrable system
~dashed line! and for 167Er ~histogram!. ~b! The probability density function of the dimensionless asymmetrical three point first finite element
for the GOE~3! ~thin dashed line!, for the integrable system~dashed line! and for 167Er ~histogram!. ~c! The probability density function of
the dimensionless symmetrical three point first finite element for the GOE~3! ~thin dashed line! for the integrable system~dashed line! and
for 167Er ~histogram!. ~d! The probability density function of the dimensionless second difference for the GOE~3! ~thin dashed line!, for the
integrable system~dashed line!, and for 167Er ~histogram!.
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order to classify the system. The confirmation of its chaos
follows from the distributions of asymmetrical element, sym-
metrical element, and second difference.

The levels in the nuclear spectrum have the same values
of Jp. The restriction of the spectrum to the subset of levels
belonging to givenJp worsens significantly the statistics~the
histogram resolution is poor!. For this reason we are in great
need of some additional quantity to help the classification of
the system. Therefore, the asymmetrical element, symmetri-
cal element, and second difference are quite helpful.

In order to classify a spectrum one should prepare the
histograms of the dimensionless spacing, dimensionless
asymmetrical element, dimensionless symmetrical element,
and dimensionless second difference. Then, one must com-
pare them with the respective theoretical distributions. We
summarize the criteria of the comparisons of the distribu-
tions with the histograms. For the dimensionless spacing the
absence of small spacing should be studied. For the dimen-
sionless asymmetrical element the horizontal position of the
maximum of the distributions and of the histogram must be
compared, as well as the closeness of the tails and the pres-
ence of the sharpness of the maxima. For the dimensionless
symmetrical element one should compare the horizontal and

the vertical positions of the maxima, and the closeness of the
tails. Finally, for the dimensionless second difference one
must measure the closeness of the tails and the sharpness of
the maxima.

We studied also the following 20 nuclear spectra from
@22–41# corresponding to 181Ta, 143Nd, 156Gd, 160Dy,
161Dy, 162Dy, 163Dy, 164Dy, 166Er, 167Er, 168Er p wave reso-
nance, 168Er s wave resonance,170Er p wave resonance,
170Er s wave resonance,164Er, 45Sc, Jp5 1

2
1 states,45Sc,

Jp5 1
2

2 states,45Sc, l52 states,45Sc, Jp5 3
2

2 states,49V,
respectively and one molecular spectrum from@42# corre-
sponding to NO2 @43#. All the above-mentioned 21 spectra
are in accordance with the theory.

III. CONCLUSIONS

We presented statistical measures: the distribution of the
second difference, the asymmetrical element, and the sym-
metrical element. They supplement the distribution of spac-
ing as good tools for the classification of the quantum sys-
tem. The distributions of all the investigated tools and of the
spacing agree; i.e., all of them assign the system to the same
class. The decision on the classification of the system now

FIG. 2. ~a! The probability density function of the dimensionless spacing for the GOE~2! ~thin dashed line! for the integrable system
~dashed line! and for random-sequence spectrum~histogram!. ~b! The probability density function of the dimensionless asymmetrical three
point first finite element for the GOE~3! ~thin dashed line!, for the integrable system~dashed line!, and for random-sequence spectrum
~histogram!. ~c! The probability density function of the dimensionless symmetrical three point first finite element for the GOE~3! ~thin
dashed line!, for the integrable system~dashed line!, and for random-sequence spectrum~histogram!. ~d! The probability density function of
the dimensionless second difference for the GOE~3! ~thin dashed line!, for the integrable system~dashed line!, and for random-sequence
spectrum~histogram!.
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depends on the conjunction of four expressions related to the
above four distributions. All the derived distributions of the
second difference have their maxima at the origin. This
means a tendency of the systems towards the homogeneous
distribution of the levels. All the collected experimental data
are consistent with this formulation. On the basis of our theo-
retical results~A10!, ~A18!, as well as on the basis of the
experimental data@Figs. 1~d! and 2~d!# we stated the follow-
ing hypothesis: For both integrable and chaotic systems, en-
ergy levels show a certain homogeneity of distribution.

The differences between the probability density functions
of the second difference for the chaotic and integrable cases
are described in detail. The detection of that detail demands
good resolution model computations with very good level
statistics.

The i th energy levelEi might be treated as a value of the
discrete functionf of its discreteindex i , namely,

f :I{ i→EiPE, ~6!

whereI is the discrete energy index set andE is the discrete
energy value set, andf ( i )5Ei . The functionf is monotonic,
because the levels are ordered and undegenerated. We as-
sume thatf is monotonic increasing since energy levelsEi
are ordered increasingly: ...<Ei21<Ei<Ei<... . Hence the
i th spacingsi is the first difference between the two adjacent
energiesEi ,Ei11 and it is also the first differential quotient
of the function f at the pointi . The i th second difference
D2Ei is the second difference of the three adjacent energies
Ei ,Ei11 ,Ei12 and it is also the second differential quotient
of the functionf at the pointi :

D2Ei5
D2f ~ i !

D i 2
. ~7!

We can treat the discrete setI of all the indexesi of the
energy levelsEi as an abstract space. Hence the second dif-
ference~1! might be seen as the curvature of the energy
function f with respect to the discrete argumenti in the
product spaceI3E.

The above interpretation of the second differential quo-
tient should be compared to the curvature of energy levels
introduced by Zakrzewski and Delande and Zakrzewski, De-
lande, and Kus´ @44,45#. The ‘‘motion’’ of the levels with
respect to the ‘‘fictitious’’ timel is studied. Namely, the
Hamiltonian operator of the quantum systemH linearly de-
pends on thecontinuousparameterl:

H~l!5H11lH2 , ~8!

whereH1 andH2 are the operators describing some parts of
the dynamics. Hence, the second derivative of the energy
level with respect tol is introduced:

K5
d2E~ i !

dl2 5
d2f ~ i !

dl2 . ~9!

The second derivativeK is called the ‘‘curvature’’ of levels.
Comparing~7! with ~9! one easily sees that the second dif-
ference is the discrete analogy of the continuous curvature in
‘‘perpendicular’’ direction tol. Hence, we can treat the sec-
ond difference as the curvature of the levelEi with respect to

its discrete label parameteri . We point out some differences
in both approaches. The change of the parameterl causes
the change of the system, but the change of the parameteri
causes the change of the energy in the same system. This
means that the study of the distribution of the curvature with
respect to the parameterl is a tool for comparing these
different yet similar systems@small changes ofl cause small
changes of HamiltonianH(A)#, whereas the study of the
system by the distribution of the second difference allows
one to investigate one system without perturbation. This ap-
proach introduces other information about the system than
K. Therefore two approaches, the use of the distribution of
second differenceD2Ei and of the distribution of curvature
K, are not equivalent to each other. Combination of these
methods together makes the investigation space ‘‘two dimen-
sional’’: one can study the changes of the functionf with
respect toi and tol ~‘‘space’’ and ‘‘time’’ coordinates!.

APPENDIX

We assume the GOE~2!. The mean spacing for the
GOE~2! reads@compare@46#, formula ~6.6.10!#

SGOE~2!5A2ps, ~A1!

wheres2 is the variance of the off-diagonal elements of the
GOE~2! matrix. We can make the spacing dimensionless by
dividing it by the mean spacingSGOE(2). We define the new
dimensionless spacing for the GOE~2! as

TGOE~2!5s1 /S
GOE~2!. ~A2!

The probability density function ofTGOE(2) is @46# formula
~6.6.11!:

f TGOE~2!~x!5Q~x!
p

2
x expS 2

px2

4 D , ~A3!

whereQ is the Heaviside function:

Q~x!5H 1 for x>0

0 for x,0.

Now, we assume the GOE~3!. The mean spacing for the
GOE~3! reads@compare@9#, formula ~5!#

SGOE~3!5
3A3s

A2p
, ~A4!

wheres2 is the variance of the off-diagonal elements of the
GOE~3! matrix. The asymmetrical element is made dimen-
sionless by dividing it by the mean spacingSGOE(3). We
define the new dimensionless random variable for the
GOE~3! as

XGOE~3!5Da,fin
1 E1 /S

GOE~3!. ~A5!

The probability density function ofXGOE(3) reads@6#
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f XGOE~3!~x!5
81

228488p2 F910A13px2315A13x3

1~1638x212704p!expS 2
25x2

52p D
1A13x~315x22910p!erfS 5x

2A13p D G
3expS 2

27x2

52p D for x>0,

f XGOE~3!~x!52
81

228488p2 F2910A13px1315A13x3

1~390x222704p!expS 2
441x2

52p D
1A13x~315x22910p!erfS 21x

2A13p D G
3expS 2

27x2

52p D for x,0, ~A6!

where the error function is

erf~x!5
2

Ap
E
0

x

dt exp~2t2!.

The symmetrical element is made dimensionless by defin-
ing the following dimensionless random variable for the
GOE~3!:

YGOE~3!5Ds,fin
1 E1 /S

GOE~3!. ~A7!

The probability density function ofYGOE(3) is @6#

f YGOE~3!~x!5
81x

4p2 F6x expS 2
9x2

p D 1~9x222p!

3expS 2
27x2

4p D erfS 3x

2Ap
D G . ~A8!

In order to make the second difference dimensionless we
divide it by the mean spacingSGOE(3) and we define the new
dimensionless random variable for the GOE~3!

ZGOE~3!5D2E1 /S
GOE~3!. ~A9!

The probability density function ofZGOE(3) reads@5#

f ZGOE~3!~x!5
3

2p
expS 2

9x2

4p D . ~A10!

We assume now the quantum integrable system. The
mean spacing throughout the level sequence is equal toD
@8#. We make the spacing dimensionless by dividing it by the
mean spacingD. We define the new dimensionless spacing
for the quantum integrable system:

TI5s1 /D. ~A11!

The probability density function ofTI is @compare@8#, for-
mula ~3!#

f TI~x!5Q~x!exp~2x!. ~A12!

We make the asymmetrical element dimensionless by divid-
ing it by the mean spacingD. We define the new dimension-
less random variable for the quantum integrable system:

XI5Da,fin
1 E1 /D. ~A13!

The probability density function ofXI is @6#

f XI~x!5H 1
2 exp~22x/3! for x>0

1
2 exp~2x! for x,0.

~A14!

We make the symmetrical element dimensionless by de-
fining the following dimensionless random variable for the
quantum integrable system:

YI5Ds,fin
1 E1 /D. ~A15!

The probability density function ofYI reads@6#

f YI~x!5Q~x!4x exp~22x!. ~A16!

In order to make the second difference dimensionless we
divide it by the mean spacingD and we define the new
dimensionless random variable for the quantum integrable
system

ZI5D2E1 /D. ~A17!

The probability density function ofZI is @5#

f ZI~x!5 1
2 exp~2uxu!. ~A18!
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