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Higher-order finite-element distributions in statistical theory of nuclear spectra
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There are several standard methods that allow for the identification of a description of quantum chaotic
systems. In this paper we discuss characteristics of quantum chaos, namely, the distributions of the following
finite elements: asymmetrical three point first finite element of the three adjacent energy levels, the symmetri-
cal three point first finite element of the three adjacent energy levels, and the second difference. The probability
density functions of these three cases were calculated for the three-dimensional Gaussian orthogonal ensemble,
Gaussian unitary ensemble, Gaussian symplectic ensemble, and for the quantum integrable three level system.
We compare these distributions with the experimental data aiming at better classification of quantum systems
(determining whether they are chaotic or integrabke hypothesis is formulated: for both integrable and
chaotic systems the energy levels have a tendency towards homogeneity. Finally we discuss the role of the
discrete analogy to the curvature of levdlS1063-651X%96)01109-9

PACS numbegps): 05.45+b, 24.60.Lz, 24.60.Ky

I. INTRODUCTION point finite elements of energy levels for the GQE
GUE(3), GSH?3), and for the quantum integrable system. We

The basic tool allowing one to study quantum chaos instudied the following three point finite elements:
many level systems is nearest neighbor spacing, that is the
difference between the adjacent levels. In an ascending se- Al
guence of energy levels of the many level quantum chaotic a,fin
system one obtains a shortage of small spacings, observed in
some nuclear and molecular spectra. To explain this phelcompare[7]; we namedA; ,E; theith asymmetrical three
nomenon Wigner assumed the Gaussian orthogona| e[ﬁ).Oint first finite element; below we call it the asymmetrical
semble GOR); the Hamiltonian matrix elements were inde- €lement and
pendent random variablegsee [1-4]). This statistical
hypothesis led to the proper description of level repulsion. AL E =

The ith spacings,=E;,;—E; (i=1,...n) is the sim- s/fin=i
plest case of the finite element and it is not a proper tool to 1 ) ]
describe homogeneity of the energy distribution or long(compare(7]; we calledA; ;. 1 theith symmetrical three
range correlation effects between levels as anyspfis  Point first finite element or just the symmetrical element
strictly local. Such information, however, can be extracted/Ve derived analytically the probability density functions of
from the distributions of the higher-order finite elements. Inthese finite elements for GQ®, GUES), and GSE3) as
order to obtain a better than standddd-4] statistical de- Well as for the sequence of the three adjacent randomly dis-
Scription of the quantum |eve| System we have derived anat.ributed energy.levels. The distribution Of.the quantity. named
lytic formulas for the distributions of some higher finite ele- first order spacingor the next nearest neighbor spadirior
ments [5,6]. In [5] we studied theith second difference the ordered sequence of the levels randomly distributed is

AZE; of the three adjacent energy levés,E;, ;,E; ., given in[8], formula (3). The explicit formulas for distribu-
tions of first order spacing were derived [i8], formula (6)

for the GOE3) and in[10], formula(89) for the GUE3). To

the best of our knowledge, the distribution for the GHE
i=1,...n—1. (1)  was derived for the first time if6]. The distributions of the
symmetrical element and of the first order spacing are con-

We demonstrated that the probability density function of thesistent. The analytic formulas for the above distr?butio_ns for
second difference has a universal character. The probabilitj’® GOE3) and for the integrable system are given in the
density function of the second difference was computed ang*PPendix. We do not present the formulas for the GB)E
lytically for the following ensembles: GQB), Gaussian uni- and GSE3) since the full formulas are contained[8,6].
tary ensemble[GUE(3)], Gaussian symplectic ensemble As |_ntroduced above, statistical measures carry partlal in-
[GSH?3)], and for the quantum integrable three level system?cor.”_“‘?‘t'On about the system, extracted from the joint prob-
In [6] we studied the three energy level quantum system an@bility density functions oh eigenvalues of a random matrix
we derived the probability density functions of the threefg,, ... g (€1, - .en) [9,11-13.
The n-level correlation functiorRy,,z was introduced by
Dyson[16] for the circular unitary ensemble of dimension
:Electronic address: duras@izis.if.uj.edu.pl N. The n-level correlation function is the joint probability
Electronic address: sokalski@izis.if.uj.edu.pl density function of findingn levels, regardless of their order,
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and the values of the remainiig—n levels are varied and element, symmetrical element, second difference, and spac-
are integrated out. It can also be defined for the GQE( ing with the experimental data.

GUE(N), and GSEN) as follows: This paper is organized as follows. In Sec. Il the distribu-
tion of the spacing is compared with the distributions of the
Rnng(€1, - - - +€n) asymmetrical element, symmetrical element, second differ-

ence for the GOE, and for the three level quantum integrable

N! % m system. In Sec. Ill we discuss the obtained results and for-
zmﬁ fﬁ denﬂmdeNfE1 _____ N mulate a hypothesis.
X (€1, .. ). @) Il. THE COMPARISON OF THE THEORETICAL

, o . RESULTS WITH THE EXPERIMENTAL DATA
Choosing the proper statistical measure depends on what in-

formation one wants to extract frorf). In the literature, In this section we study the nuclear spectrum and the
there are different statistical measures derived ffdjn random-sequence spectrum. According to classification
Dyson defined the-level correlation functiorP,; of the ~ based on the finite-element distributions, one of them be-

n levelsE,, ... E, assuming the circular unitary ensemble longs to the quantum chaotic system and the remaining one
of the dimensiorN, for N—: to the quantum integrable system. For every spectrum we
study the distribution of spacing, symmetrical element,

a \" asymmetrical element, and second difference. The way to

Prs(€1,....6n)=lim| ——]| Ryps(€1, ... €n), compare the theoretical distributions for the GOE ensembles
N—e | D \/m and for the quantum integrable system with the experimental

5 data is to make the above four notions dimensionless. This
can be achieved by dividing them by the mean value of the
where D is the mean level spacing. He derived the exacispacing for GOR2), GOE3), and for the quantum integrable
formula for P», [16]. He also succeeded, using the quater-system, respectively. For the given experimental spectrum
nion algebra, to derive the exact formulas f@,;, we make these notions dimensionless by dividing them by
n=1,2,...,whereg=1,2,4 stands for the circular orthogo- the mean value of the spacing calculated for the spectrum.
nal ensemble, circular unitary ensemble, and circular symHence, we compare the distribution of the given notion for
plectic ensemble, respectivelfl7]. Mehta derived the the GOE ensembles, and for the quantum integrable system
n-level cluster functionP, ; for the GOE, GUE, and GSE with the histogram of the notion given from the experimental
ensembld11]. Dyson and Meht#15] defined theA; statis-  spectrum. All the details concerning the theoretical approach
tics, that is the least-square deviation of the staircase functioare given in the Appendix.
from the best straight line fitting it. The varian&#(n) of We present the distributions of spacing, asymmetrical el-
the number of levels in the interval of the length has also  ement, symmetrical element, and second difference for the
been studied14]. Both the former and the latter constitute GOE ensembles, and for the quantum integrable system, and
the measures of the “local” two-level fluctuations of the the corresponding experimental histograms(an (b), (c),
spectrum. Hag, Pandey, and Bohigas introduced a spectrand (d) of Figs. 1 and 2 respectively, where Figs. 1 and 2
averagedA; measurd 18], and found very good agreement show the two above-mentioned spectra. To do this we ap-
between the two-level correlations in the nuclear data enplied formulas(A2), (A6), (A8), (A10), (A12), (Al14), (A16),
semble(NDE) and the two-level correlations predicted by and (A18). The experimental data were unfolded using the
GOE. In Ref.[19] they studied the three level and four level the procedure described [&0].
correlations. They introduced the skewnegs which is the The first spectrum corresponds¥/Er [21]. The levels in
function of two level and three level correlation functions, the spectrum have the samd&. Analysis of this spectrum
and the excess,, which is the function of two, three, and based on the spacing distribution is presenteplli4] [com-
four level correlation functions. These two fluctuation mea-pare Figs. 1a) and Za) therein, and the system is classified
sures calculated for GOE are in good agreement with NDEas chaotic. We study the spectrum using the distributions of
Let us answer why we choose to work with finite ele- finite elements. Looking at Fig.(4 one can see that the
ments. First of all, they are natural extensions of spacing. Alsystem is chaotic, since the level repulsion is observed. The
n-point finite elements{=2) equivalent to the first differ- same conclusion comes from Figibl, because the experi-
ential quotient describe the level repulsion caused by longnental histogram can be fitted by the G@Edistribution;
range correlationgfor large n). The n-point second differ- the maxima of both curves are mt=1 and the tails of the
ences (=3) describe the homogeneity of levels including curves are close to each other foc0 andx=2. Further-
long range correlations. Naturally one can introduce thamore we notice that the maxima are not as sharp as the
n-point higher-order differences describing even more finanaximum of the distribution of the dimensionless asym-
details of the level distributions. Thus the finite-element dis-metrical element for the quantum integrable system. The
tributions allow one to extract in a systematic way muchsharp maximum means that the first derivative of the distri-
information about higher correlation effects. Moreover, webution has discontinuity. For confirmation of the chaotic
will show in this paper that these statistical measures areharacter of the system see Figc)l The histogram and the
very easy to apply for a comparison between the experimensOK?3) distribution of the dimensionless symmetrical ele-
tal data and theory. The aim of this paper is to compare thenent fit well together: they have maximayat1 and they
theoretical results for the distributions of the asymmetricalhave the same values at the maxima. Moreover, their tails are
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FIG. 1. (a) The probability density function of the dimensionless spacing for the @Ohin dashed lingfor the integrable system
(dashed lingand for *7Er (histogram. (b) The probability density function of the dimensionless asymmetrical three point first finite element
for the GOHJ) (thin dashed ling for the integrable systerfdashed lingand for *Er (histogram. (c) The probability density function of
the dimensionless symmetrical three point first finite element for the (@Qthin dashed lingfor the integrable systerfdashed lingand
for 87Er (histogranm. (d) The probability density function of the dimensionless second difference for theZQEin dashed ling for the
integrable systenidashed ling and for *¥7Er (histogram.

close to each other for€9x=<0.5 and forx=1.5. The short- almost perfectly the distribution of the dimensionless asym-
age of small values of the dimensionless symmetrical elemetrical element for the quantum integrable system, the
ment is also observed, which is equivalent to the shortage ahaxima of both curves are at=0 and the tails of the curves
next nearest neighbor spacing. This means that the systemase close to each other on the whole domain. The maximum
chaotic. The results from Fig(d) also confirm that the sys- of the histogram and the maximum of the distribution of the
tem is chaotic, since the distribution of the dimensionlesslimensionless asymmetrical element for the quantum inte-
second difference for the GQB and the histogram of the grable system are very sharp. From Figc)2ve also learn
dimensionless second difference are in accordance with eathat the system is integrable. The histogram excellently fits
other. Their maxima are at=0, and the maxima are not the distribution of the dimensionless symmetrical element for
sharp[compare the sharpness of the maximum of the distrithe quantum integrable system. They have maxima at
bution of the dimensionless second difference for the quanx=0.5, and they have approximately the same values at the
tum integrable system; see Figdl]. Moreover, their tails maxima. Moreover, their tails are close to each other on the
are close to each other far<—1 and forx=1. To make a whole domain. The presence of small values of the dimen-
short summary: the distributions of all the four notions pointsionless symmetrical element is observed. Finally Fig) 2
to chaos of the system. demonstrates that the system is integrable, since the distribu-
The second spectrum corresponds to our numerical simuion of the dimensionless second difference for the quantum
lation of the random-sequence spectrum of length 2500. Antegrable system and the histogram of the dimensionless
similar simulation was made ir14] [compare Figs. @) and  second difference are in accordance with each other. They fit
2(d) thereinl. The system was classified as integrable. Look-each other excellently. Their maxima arexat0, and the
ing at Fig. Za) one easily deduces that the system is inte-maxima are very sharp. Their tails are close to each other for
grable, because the small spacings are dominant and the hisi x. In summary, all four notions predict the integrability of
togram and the distribution of dimensionless spacing for thehe system.
integrable case fit excellently. From Fig(b2 we recognize The clear message coming out of all these exercises is that
that the system is integrable. The experimental histogram fit# is important to study together the different distributions in
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FIG. 2. (a) The probability density function of the dimensionless spacing for the @Ohin dashed lingfor the integrable system
(dashed lingand for random-sequence spectrgmstogram. (b) The probability density function of the dimensionless asymmetrical three
point first finite element for the GAB) (thin dashed ling for the integrable systerdashed ling and for random-sequence spectrum
(histogram). (c) The probability density function of the dimensionless symmetrical three point first finite element for the8)G@imn
dashed ling for the integrable systerfdashed ling and for random-sequence spectr(iiistogran). (d) The probability density function of
the dimensionless second difference for the G&)Ethin dashed ling for the integrable systerfdashed ling and for random-sequence
spectrum(histogram.

order to classify the system. The confirmation of its chaoghe vertical positions of the maxima, and the closeness of the
follows from the distributions of asymmetrical element, sym-tails. Finally, for the dimensionless second difference one
metrical element, and second difference. must measure the closeness of the tails and the sharpness of

The levels in the nuclear spectrum have the same valugbe maxima.
of J7. The restriction of the spectrum to the subset of levels We studied also the following 20 nuclear spectra from
belonging to giverd™ worsens significantly the statistihe ~ [22—41 corresponding to *¥Ta, 4Nd, °%Gd, Dy,
histogram resolution is poprFor this reason we are in great %Dy, 62Dy, 163y, 164py, 16y 167Er, 1681 p wave reso-
need of some additional quantity to help the classification ohance, 1°%r s wave resonancel’’Er p wave resonance,
the system. Therefore, the asymmetrical element, symmetrit’°Er s wave resonance!®Er, *°Sc, J7=31" states,*>Sc,
cal element, and second difference are quite helpful. J7=1" states,*Sc, | =2 states,**Sc,J"=3" states,*¥V,

In order to classify a spectrum one should prepare theespectively and one molecular spectrum fro42] corre-
histograms of the dimensionless spacing, dimensionlessponding to NQ [43]. All the above-mentioned 21 spectra
asymmetrical element, dimensionless symmetrical elemengre in accordance with the theory.
and dimensionless second difference. Then, one must com-
pare them with the respective theoretical distributions. We
summarize the criteria of the comparisons of the distribu-
tions with the histograms. For the dimensionless spacing the We presented statistical measures: the distribution of the
absence of small spacing should be studied. For the dimersecond difference, the asymmetrical element, and the sym-
sionless asymmetrical element the horizontal position of thenetrical element. They supplement the distribution of spac-
maximum of the distributions and of the histogram must beng as good tools for the classification of the quantum sys-
compared, as well as the closeness of the tails and the pretem. The distributions of all the investigated tools and of the
ence of the sharpness of the maxima. For the dimensionlespacing agree; i.e., all of them assign the system to the same
symmetrical element one should compare the horizontal andlass. The decision on the classification of the system now

IIl. CONCLUSIONS
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depends on the conjunction of four expressions related to thiés discrete label parameterWe point out some differences
above four distributions. All the derived distributions of the in both approaches. The change of the parameteauses
second difference have their maxima at the origin. Thisthe change of the system, but the change of the parameter
means a tendency of the systems towards the homogeneotsuses the change of the energy in the same system. This
distribution of the levels. All the collected experimental datameans that the study of the distribution of the curvature with
are consistent with this formulation. On the basis of our theorespect to the parameter is a tool for comparing these
retical results(A10), (A18), as well as on the basis of the different yet similar systemsmall changes of cause small
experimental datfFigs. 1(d) and 2d)] we stated the follow- changes of Hamiltoniad(A)], whereas the study of the
ing hypothesis: For both integrable and chaotic systems, ersystem by the distribution of the second difference allows
ergy levels show a certain homogeneity of distribution. one to investigate one system without perturbation. This ap-
The differences between the probability density functionsproach introduces other information about the system than
of the second difference for the chaotic and integrable caseas. Therefore two approaches, the use of the distribution of
are described in detail. The detection of that detail demandsecond differenceé\?E; and of the distribution of curvature
good resolution model computations with very good levelK, are not equivalent to each other. Combination of these

statistics. methods together makes the investigation space “two dimen-
Theith energy leveE; might be treated as a value of the sjonal”: one can study the changes of the functiomvith
discrete functiorf of its discreteindexi, namely, respect ta and to\ (“space” and “time” coordinates.
f:lsi—E;eE, (6)
APPENDIX

wherel is the discrete energy index set aids the discrete We assume the GQB). The mean spacing for the

energy value set, anfdi) = E; . The functionf is monotonic, 6.6.1
because the levels are ordered and undegenerated. We gs(?E(Z) reads{compare{46], formula (6.6.10]

sume thatf is monotonic increasing since energy levels —=5557
- . SCOR2) = \27rar
are ordered increasingly: sE;_;<E;<E;<.... Hence the '

ith spacings; is the first difference between the two adjacent 5. ] )
energiesE; ,E; ., and it is also the first differential quotient whereo“ is the variance of the off-diagonal elements of the

of the functionf at the pointi. Theith second difference CGOE2) matrix. We can make the spacing dimensionless by
AZE; is the second difference of the three adjacent energiedividing it by the mean spacing®°=>). We define the new
E,Ei.1,Ei., and it is also the second differential quotient dimensionless spacing for the G(as

of the functionf at the pointi:

(A1)

TEOR2) =g, /SEOR2), (A2)
AZE _AZ(i) ;
A 0 The probability density function of ©©&() s [46] formula

6.6.11:

We can treat the discrete sktof all the indexes of the ( !
energy level€E; as an abstract space. Hence the second dif- - X2
ference (1) might be seen as the curvature of the energy fTGoaz)(X)=®(X)§X exy{ _T)’ (A3)
function f with respect to the discrete argumenin the

roduct spacé X E. . - .
P The abpove interpretation of the second differential quo—Where is the Heaviside function:
tient should be compared to the curvature of energy levels
introduced by Zakrzewski and Delande and Zakrzewski, De- @(X):[ 1 for x=0

lande, and Kug44,45. The “motion” of the levels with 0 for x<0.

respect to the “fictitious” time\ is studied. Namely, the

Hamiltonian operator of the quantum systéinlinearly de- Now, we assume the GQB®. The mean spacing for the
pends on theontinuousparametei: GOK3) reads[compare[9], formula (5)]
H(\)=H;+\H;, 8
(M) =H1+)H, ®) SN »
whereH, andH, are the operators describing some parts of ox’

the dynamics. Hence, the second derivative of the energy

level with respect to. is introduced: whereo? is the variance of the off-diagonal elements of the

d2E()  d?H(i) GOHK3) matrix. The asymmetrical element is made dimen-

==, 9) sionless by dividing it by the mean spaci®f°=). we
d\? d\?

define the new dimensionless random variable for the

The second derivativK is called the “curvature” of levels. GOH3) as

Comparing(7) with (9) one easily sees that the second dif- -

ference is the discrete analogy of the continuous curvature in XCOH3) = Ai,ﬁnEﬂSGOE“)- (AS5)
“perpendicular” direction tox. Hence, we can treat the sec-

ond difference as the curvature of the leielith respect to The probability density function 0k®°E(®) reads[6]
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81 ZCOH¥ = A?E, [SCOH3), (A9)
fXGOE(S)(X) Zm 910\/1—37TX_ 315\/13(3 !
The probability density function af ®©5() reads[5]
1 (1638C+ 27047) p( 25)(2) s ox*
exp — —— = =
527 f7c0E3)(X) 271_eX[{ 477). (A10)
) 5x We assume now the quantum integrable system. The
+ @(31& —910m)erf 2137 mean spacing throughout the level sequence is equBl to
[8]. We make the spacing dimensionless by dividing it by the
27%2 mean spacind. We define the new dimensionless spacing
Xexp — Som for x=0, for the quantum integrable system:
T'=s,/D. (A11)
81
fxcor3)(X)=— 555755 —910/13mx+ 315133 The probability density function of' is [compare[8], for-
2284887
mula (3)]
441x° = -
+(390(2_2704ﬂ)exp(_ 52#) f(X) = O (X)exp —X). (A12)
We make the asymmetrical element dimensionless by divid-
21x ing it by the mean spacing. We define the new dimension-
+ \/fax(315<2—91077)erf less random variable for the quantum integrable system:
2\137
X'=A} (E1/D. (A13)
27x2
xexp —g,—| for x<0, (AB)  The probability density function oX' is [6]
where the error function is 2exp(—2x/3) for x=0
fyi(x)= (Al4)

Texp(2x) for x<O.

2 X
erf(x)= \/—_fo dtexp(—t?).
. We make the symmetrical element dimensionless by de-

The symmetrical element is made dimensionless by definfining the following dimensionless random variable for the
ing the following dimensionless random variable for theduantum integrable system:

GOH3): Y'=ALEL/D. (A15)

GOE3)_ Al GOK3)
Y AsinE1/S : (A7) The probability density function of' reads[6]

The probability density function oY ©°5(®) is [6] Fyi(X) = O (X) AX eXf — 2X). (A16)

1x p( 9x?
exexp — —
v

8
fycoas)(X)=7—
" F{ 27x2> f( 3X)
exg — — |erf —
4 2\ Z'=A%E,/D. (A17)

4
In order to make the second difference dimensionless werhe probability density function o' is [5]
divide it by the mean spacing®°5®) and we define the new
dimensionless random variable for the GGE f2(x)= 3 exp —|x|). (A18)

In order to make the second difference dimensionless we
divide it by the mean spacin® and we define the new
dimensionless random variable for the quantum integrable
system

+(9x2—217)

. (A8)
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